Journal of Organometallic Chemistry, 137 (1977) 69-78 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

VINYLIDENE COMPLEXES OF TRANSITION METALS

III *. DERIVATIVES OF CYCLOPENTADIENYLTRICARBONYL RHENIUM WITH PHENYLVINYLIDENE LIGANDS. CRYSTAL AND MOLECULAR STRUCTURE OF Cp(CO)₂Re[C=C(Ph)-C(Ph)=CH₂]Re(CO)₂Cp

N.E. KOLOBOVA, A.B. ANTONOVA, O.M. KHITROVA, M.Yu. ANTIPIN and Yu.T. STRUCHKOV

Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Vavilov Str. 28, Moscow, B-312 (U.S.S.R.)

(Received March 24th, 1977)

Summary

The novel complexes $CpRe(C=CHPh)(CO)_2$ and $Cp_2Re_2(\mu-C=CHPh)(CO)_4$ containing a terminal and a bridging phenylvinylidene ligand respectively and the binuclear complex $Cp(CO)_2Re[C=C(Ph)C(Ph)=CH_2]Re(CO)_2Cp$ were obtained in the reaction of $CpRe(CO)_3$ with PhC=CH.

According to an X-ray study of the latter complex the unusual bridging ligand is η^1 -bonded to one Re atom and η^2 -bonded to the other.

Introduction

Several types of transition metal compounds with organic η^1 -ligands are known. Along with σ -organic and carbene complexes where the bond order of the metal—carbon bond is 1—1.2 [2], compounds containing double and triple metal—carbon bonds are being extensively studied at present [1,3]. The synthesis and properties of the rhenium complexes CpRe(C=CHPh)(CO)₂ and Cp(CO)₂-Re[C=C(Ph)—C(Ph)=CH₂]Re(CO)₂Cp with double metal—carbon bonds and also of the complex Cp₂Re₂(μ -C=CHPh)(CO)₄ which were obtained in the reaction of CpRe(CO)₃ with PhC=CH are reported for the first time in the present paper.

Results and discussion

Previously we have shown that phenylacetylene π -bonded to the Mn atom in CpMn(CO)₂(PhC=CH) undergoes a rearrangement into a carbene type phenyl-

* For part II see ref. 1.

vinylidene ligand. Carbene (>C=CHPh) which is unstable in the free state is stabilized by coordination with a Mn atom forming stable CpMn(C=CHPh)(CO)₂ and Cp₂Mn₂(μ -C=CHPh)(CO)₄ complexes [1].

In order to determine the influence of a transition metal on the capacity of π -coordinated phenylacetylene to rearrange into a phenylvinylidene ligand we studied the reaction of phenylacetylene with π -cyclopentadienyl rhenium tricarbonyl.

Several complexes were obtained by chromatography of the products of the photochemical reaction between $CpRe(CO)_3$ and PhC=CH in THF (see Scheme 1).

SCHEME 1

Some physical properties of compounds II-IV are given in Table 1.

The unstable π -complex I was not isolated but its formation in the first stage of the reaction was confirmed by IR spectroscopy in the 2200–1600 cm⁻¹ range. In addition to $\nu(CO)$ bands of CpRe(CO)₃ and II the spectrum contains a $\nu(C=C)$ band at 1840 cm⁻¹ and two $\nu(CO)$ bands at 1980 and 1911 cm⁻¹ (cyclohexane solutions). The two latter bands are close to those of CpRe(CO)₂(PhC= CPh) (1982 and 1911 cm⁻¹ in cyclohexane).

The π -acetylenic complex I undergoes rearrangement into the stable complex II. The yield of II depends on the reaction conditions and decreases with a temperature increase. In contrast to CpMn(C=CHPh)(CO)₂ which is formed in a basic medium (on alumina at pH 9–10), II was isolated on SiO₂ in neutral conditions.

TABLE 1

PHYSICAL PROPERTIES OF RHENIUM VINYLIDENE COMPLEXES

Compound	Colour	M.p. (°C)	IR ν (CO) (cm ⁻¹) (in cyclohexane)
CpRe(C=CHPh)(CO) ₂ (II)	red	75-76	2003, 1938
$Cp_2Re_2(\mu-C=CHPh)(CO)_4$ (III)	yellow	193—194	1982, 1953, 1916
$Cp_2Re_2[C=C(Ph)-C(Ph)=CH_2](CO)_4$ (IV)	light red	150-152	2000, 1982, 1930, 1914

The red crystalline complex II is readily soluble in organic solvents, sublimates without decomposition at $80-100^{\circ}C/1 \times 10^{-2}$ mmHg. Its IR spectrum has two bands in the region of carbonyl stretching frequencies (Table 1).

Comparison of the $\nu(CO)$ frequencies of CpRe(C=CHPh)(CO)₂ with published data on CpRe(CO)₂L complexes [4] indicates a strong electron-acceptor capacity of the phenylvinylidene ligand. The Raman spectrum of II has an intensive line at 1594 cm⁻¹, which we assigned to the $\nu(C=C)$ of the vinylidene ligand. In the IR spectrum $\nu(C=C)$ is at 1591 cm⁻¹.

According to a preliminary X-ray study of II * the vinylidene carbon forms a double bond with the metal atom and the Re=C=C fragment represents a linear metalallene system.

The data of the ¹³C NMR spectrum of II, given in Table 2, are consistent with the structure of this compound. The C^1 atom of the vinylidene ligand reveals a single signal with a strong downfield shift.

It is interesting that unlike CpMn(C=CHPh)(CO)₂ which gradually converts into Cp₂Mn₂(μ -C=CHPh)(CO)₄ with a bridging phenylvinylidene ligand [1], II is quite stable and does not convert into III under normal conditions.

Formation of III in the reaction of $CpRe(CO)_3$ with phenylacetylene is apparently due to interaction of the complex II already formed with coordinatively and electronically deficient $[CpRe(CO)_2]$ present in the reaction mixture.

Complex III can be obtained directly from II by treating it with a water/alcohol/base mixture

$$CpRe(C=CHPh)(CO)_2 \xrightarrow{KOH/MeOH} Cp_2Re_2(\mu-C=CHPh)(CO)_4$$
(II)
(III)

Complex III is a yellow crystalline substance readily soluble in polar organic solvents. It is stable under normal conditions and sublimates without decomposition at 80–100°C/1 × 10⁻² mmHg. Its IR spectrum contains three ν (CO) bands (Table 1) whose positions and intensities are similar to those in the spectrum of

* This study was carried out by V.G. Andrianov and Yu.T. Struchkov.

TABLE 2				
¹³ C NMR	DATA	FOR	CpRe(C=CHPb)(CO) ₂ a

		c ¹ =c ² < ^C _H	6H5	:			
C _S H ₅	60	C1	C ²	C ₆ H ₅			
				c _{key}	C _{ortho}	C _{meta}	C _{para}
90.37 (180.7)	198.55	329,49	119.49 (155.6)	128.66	125. 5 3 (160.0)	124.88 (158.7)	129.52 (158.7)

 $a\delta(^{13}C)$ (ppm), in relation to TMS; The $^{1}J(^{13}C-^{1}H)$ coupling constants (Hz) in parantheses.

[1] where a *trans*-arrangement of Cp rings in relation to the Mn—Mn bond was established by X-ray study [5]. The ν (C=C) frequency of the bridging vinylidene ligand in III is at 1555 cm⁻¹ both in the Raman and in the IR spectra.

The mass spectrum of III has an intensive peak at $P^* = 716 \ m/e$ corresponding to a molecular ion and peaks of $[P - nCO]^+$ ions (n = 1-4). Elimination of the C=CHPh ligand from a completely decarbonylated ion indicates that the metalphenylvinylidene bond is stronger than the Re-CO bond.

In contrast to II and III both formed in the photochemical reactions of CpRe-(CO)₃ with phenylacetylene and in the reaction of the latter with intermediate CpRe(CO)₂(THF), IV is produced only by UV irradiation of a mixture of CpRe-(CO)₃ with phenylacetylene in THF. IV is readily soluble in polar organic solvents and is stable under normal conditions. Its IR spectrum contains four bands in the ν (CO) region (Table 1). The mass spectrum reveals a peak at $P^* = 818 \text{ m/e}$.

The structure of IV was determined by an X-ray study and turned out to be quite unexpected. The molecule of IV contains an unusual bridging 2,3-diphenyl-butadienylidene $[C=C(Ph)-C(Ph)=CH_2]$ ligand. Presumably formation of IV involves II, phenylacetylene and $[CpRe(CO)_2]$ species and requires UV irradiation.

Light red crystals of Cp(CO)₂Re[C=C(Ph)–C(Ph)=CH₂]Re(CO)₂Cp are monoclinic: a = 16.91(1) b = 8.206(4), c = 18.99(1) Å, $\beta = 106.66(4)^{\circ}$, V = 2524(2) Å³, Mol. wt. 818.9, $D_{obs}^{20^{\circ}}$ 2.09 ± 0.03, D_{calc} 2.152 g cm⁻³ (at -120°C), Z = 4, space group $P2_1/n$. Intensities of 3030 independent reflections were measured at -120°C with a Syntex $P2_1$ diffractometer with a low-temperature LT-1 attachment (λ Mo- K_{α} , graphite monochromator, $\theta/2\theta$ scan). 2440 reflections with $F^2 > 1.9\sigma$ (F^2) were used for solution of the structure. Coordinates of the Re atoms were determined from the three-dimensional Patterson function, and all other non-hydrogen atoms were localized by successive syntheses of electron density. The structure was refined by the anisotropic full-matrix least-squares technique to R = 0.052.

The molecular geometry, main bond lengths and angles are shown in Fig. 1; atomic coordinates, bond lengths, bond angles and equations of some planar molecular fragments are given in Tables 3–6.

The Re(2) atom is coordinated with a η^5 -Cp ligand and two carbonyls as well as with a monodentate vinylidene ligand, forming a metalallene system Re(2)= C(8)=C(7). The Re(1) atom is also coordinated with a η^5 -Cp ligand and two car-

ATOMIC COORDINATES (X 10⁴) TABLE 3

•

Atom Re(1) Re(2) C(1) C(2) O(1) O(1)	ĸ					
Re(1) Re(2) C(1) C(2) O(1)			2		N	
Re(2) C(1) C(2) O(1) O(2)	2438.7((9	6397.	6(12)	727.6((2)
C(1) C(2) O(1) D(3)	156.2((9	9366	(1)	-1594.7(6
C(2) 0(1) 0(2)	3596 (17)	6484	(37)	880 ((15)
0(1) 0(2)	2695 (12)	167	(23)	1655 ((13)
0(2)	4297 (6)	6431	(21)	916	6
	2808 (6)	7839	(20)	2269 (6
C(3)	-208 (13)	7293	(32)	-2037 ((12)
C(4)	-182 (13)	8644	(29)	-748 ((13)
0(3)	388 (6)	6030	(20)	-2276 (6
0(4)	-377 (6)	8202	(10)	-269 (8
C(5)	3121 (12)	3810	(25)	4600	(TE
C(6)	2384 (12)	8552	(26)	-67 ((11)
c(1)	2006 (13)	8050	(26)	-827 ((TE
. (8)	1246 (14)	8691	(27)	-1136 ((11)
C(9)	3161 (12)	9721	(24)	69	(12)
C(10)	3202 (13)	10392	(24)	-576 ((13)
C(11)	3965 (14)	11465	(30)	-475 ((91)
C(12)	4462 (13)	11893	(25)	226 (15)

tom	×	Ŷ	N
(13)	4290(14)	1123(29)	848(13)
(14)	3632(12)	10112(29)	749(12)
(15)	2407(14)	6907(25)	-1238(12)
(16)	3247(13)	6567(28)	969(12)
(11)	3606(13)	5334(29)	-1321(12)
(18)	3135(14)	4516(28)	-1932(14)
(1);	2281(15)	4854(26)	-2228(12)
(20)	1926(13)	6027(27)	-1876(12)
([2])	1141(13)	5192(28)	465(15)
(22)	1427(15)	5040(33)	
(23)	2139(16)	4042(26)	62(16)
(24)	2307(15)	3627(30)	844(19)
(26)	1679(16)	4398(31)	1097(15)
(26)	-57(16)	10871(30)	-2652(12)
:(27)	625(14)	11599(25)	-2092(12)
(28)	320(15)	12191(26)	-1474(14)
(29)	4404(15)	3187(27)	3289(13)
(30)	-792(14)	11031(31)	-2421(14)

TARLE A

1400.				
BOND	LENGTHS	đ	(Å)	•

Bond	d(Å)	Bond	d(Å)
Re(1)C(1)	1.90(3)	C(9)-C(10)	1.40(3)
Re(1)C(2)	1.85(2)	C(10)-C(11)	1.41(3)
Re(1)C(5)	2.21(2)	C(11)C(12)	1.40(4)
Re(1)-C(6)	2.31(2)	C(12)C(13)	1.40(4)
Re(1)-C(21)	2.32(2)	C(13)-C(14)	1.41(3)
Re(1)-C(22)	2.31(3)	C(9)-C(14)	1.36(3)
Re(1)C(23)	2.30(2)		
Re(I)-C(24)	2.30(2)	C(15)-C(16)	1.39(3)
Re(I)C(25)	2.31(3)	C(16)-C(17)	1.44(3)
		C(17)-C(18)	1.38(3)
Re(2)C(3)	1.91(3)	C(18)C(19)	1.42(3)
Re(2)C(4)	1.94(2)	C(19)C(20)	1.40(3)
Re(2)-C(8)	1.90(2)	C(20)-C(15)	1.44(3)
Re(2)-C(26)	2.30(2)		
Re(2)-C(27)	2.31(2)	C(21)-C(22)	1.39(4)
Re(2)-C(28)	2,35(2)	C(22)-C(23)	1.42(4)
Re(2)-C(29)	2.36(2)	C(23)C(24)	1.49(4)
Re(2)-C(30)	2.34(2)	C(24)-C(25)	1.43(4)
		C(21)-C(25)	1.45(4)
C(5)-C(6)	1.41(3)	C(26)-C(27)	1.45(4)
C(6)-C(7)	1.46(3)	C(27)-C(28)	1.49(4)
C(6)-C(9)	1.59(3)	C(28)-C(29)	1.52(4)
C(7)-C(8)	1.33(3)	C(29)-C(30)	1.44(4)
C(7)-C(15)	1.50(3)	C(26)-C(30)	1.44(4)
C(1)O(1)	1.17(4)		
C(2)O(2)	1.19(3)		
C(3)O(3)	1.14(3)		
C(4)-O(4)	1.13(3)		

bonyls and in addition a π -ethylenic fragment bonded to the C(7) of a metalallene system occupies one coordination site.

The metalallene system is linear with the double bond Re=C(8) (1.90(2) Å) considerably shorter than the ordinary Re—C σ -bonds (2.25 in CpRe(CH₃)₂C₅H₅CH₃ [6], 2.22 Å in p-ClC₆H₄Re(CO)₅ [7] and 2.32 Å in CpRe(CO)₂BrCH₃ [8]) and the sum of the single-bonded covalent radii of Re and C(sp³) (2.297 Å [9]). In contrast, the length of the Re=C(8) double bond is close to the sum of the double-bonded radii of Re (1.24 Å [10]) and C(sp²) (0.67 Å). The metalallene system was previously found in (η^5 -C₅H₅)Mn(CO)₂(C=CHPh) [5] where the length of the Mn=C bond is 1.68(2) Å. Both in this complex and in IV the metalallene system is almost coplanar with the C(15)—C(20) phenyl ring (torsional angle around the C(7)—C(15) bond is 15°).

The central C(5)-C(8) fragment of the organic ligand is nonplanar, the torsion-

Fig. 1. The molecular structure of $Cp(CO)_2Re[C=C(Ph)-C(Ph)=CH_2]Re(CO)_2Cp$ with main bond lengths and angles.

al angle around the C(6)—C(7) bond being 29.7°, and the phenyl rings are turned relative to the C(6)—C(7)—C(8) and C(5)—C(6)—C(7) planes by 18° and 41° respectively; the dihedral angle between the phenyl rings is equal to 73°. The lengths of the C(7)—C(15) and C(6)—C(9) bonds are 1.50(3) and 1.59(3) Å respectively and presumably exclude conjugation of the phenyl rings with the butadiene C(5)—C(8) fragment.

The rest of the bond lengths and angles are normal, the average Re(2)-C(Cp), Re(1)-C(Cp) and C-C distances in the Cp ligands are 2.31(2), 2.33(2) and 1.46(4) Å respectively. Due to coordination with Re(1), the C(5)=C(6) distance is increased to 1.41(3) Å as compared with 1.33(3) Å for the non-coordinated C(8)=C(7) bond. The distances Re(1)-C(5) (2.21(2) Å and Re(1)-C(6) (2.31(2) Å) differ considerably. The bond lengths Re-CO vary from 1.85(2) to 1.94(2) Å and C-O bonds from 1.13(3) to 1.17(4) Å in length.

TABLE	5

BOND ANGLES, ω (degrees)

Angle	ω	Angle	ω	
Re(1)-C(1)-O(1)	173(2)	C(15)-C(16)-C(17)	119(2)	
Re(1)-C(2)-O(2)	175(2)	C(16)-C(17)-C(18)	121(2)	
Re(1)-C(6)-C(7)	111(1)	C(17)-C(18)-C(19)	121(2)	
C(1)-Re(1)-C(2)	84(1)	C(18)-C(19)-C(20)	118(2)	
C(3)-Re(2)-C(4)	88(1)	C(19)-C(20)-C(15)	122(2)	
C(5)-Re(1)-C(6)	36.4(7)	C(20)-C(15)-C(16)	119(2)	
C(5)C(6)C(7)	119(2)	· · · · ·	•••	
C(5)C(6)C(9)	116(2)	C(21)-C(22)-C(23)	107(2)	
C(6)C(7)C(8)	116(2)	C(22)-C(23)-C(24)	108(2)	
C(6)C(7)C(15)	124(2)	C(23)-C(24)-C(25)	107(2)	
C(6)-C(9)-C(10)	118(2)	C(24)-C(25)-C(20)	105(2)	
C(6)-C(9)-C(14)	121(2)	C(25)-C(21)-C(22)	112(2)	
C(7)-C(15)-C(16)	120(2)		(-)	
C(7)-C(15)-C(20)	121(2)	C(26)-C(27)-C(28)	109(2)	
C(7)-C(6)-C(9)	115(2)	C(27)-C(28)-C(29)	105(2)	
C(8)-C(7)-C(15)	120(2)	C(28)-C(29)-C(30)	108(2)	
Re(2)-C(8)-C(7)	179(3)	C(29)-C(30)-C(26)	110(2)	
Re(2)-C(3)-O(3)	176(2)	C(30)-C(26)-C(27)	108(2)	
Re(2)-C(4)-O(4)	179(2)			
C(9)C(10)C(11)	117(2)			
C(10)-C(11)-C(12)	122(2)			
C(11)-C(12)-C(13)	119(2)			
C(12)-C(13)-C(14)	119(2)			
C(13)-C(14)-C(9)	123(2)			
C(14)-C(9)-C(10)	123(2)			

TABLE 6

EQUATIONS Ax + By + Cz - D = 0 OF PLANAR FRAGMENTS IN THE IV MOLECULE

Plane	A	B	с	 D
C(21)-C(22)-C(23)-C(24)-C(25)	-0.5461	-0.8322	-0.0961	-4.638
C(26)-C(27)-C(28)-C(29)-C(30)	-0.2026	0.8824	-0.4247	9,9368
C(9)-C(10)-C(11)-C(12)-C(13)-C(14)	0.5899	-0.7757	-0.2243	-2.6775
C(15)-C(16)-C(17)-C(18)-C(19)-C(20)	0.1597	0.6937	-0.7023	7.0848

Experimental

Argon-saturated dry solvents were used. All operations were carried out under argon atmosphere. Photochemical reactions were run in a quartz apparatus equipped with a cooling jacket using a PK-7 mercury lamp (1000 W). Chromatography was performed on a column packed with silica (Chemapol, Czechoslovakia). IR spectra were measured with a UR-20 (Zeiss) instrument. Raman spectra were obtained on a PHO Coderg spectrometer with He/Ne-laser excitation. Mass spectra were obtained using a AEJ MS-30 instrument with a DS-50 data processing system at injection temperature 110°C, source temperature 200°C and ionization voltage 70 V. Resolution was 1000 for both beams.

¹³C MNR spectra in CH_2Cl_2 were recorded with a Brucker HX-90 spectrometer (22.635 MHz).

Reaction of $CpRe(CO)_3$ with $PhC \equiv CH$

A mixture of 0.67 g (0.002 mol) of CpRe(CO)₃, 0.45 g (0.004 mol) of PhC=CH and 40 ml of THF was UV irradiated at 5°C for 7 h with stirring. After evaporation of the solvent in vacuo a red-brown oil was obtained that was extracted with petroleum ether (b.p. $35-40^{\circ}$ C). The extract was chromatographed on a silica column giving the following fractions: with petroleum ether colorless, (1); with ether/petroleum ether mixtures, (1:100) bright pink, (2), (1:50) yellow (3), (1:10) light red, (4), and (1:4) again yellow, (5).

Fraction (1) contained 0.5 g of a mixture of CpRe(CO)₃ and PhC=CH. After evaporation of the solvent from fraction (2) the dry residue was recrystallized from petroleum ether to yield 0.12 g (12%) of CpRe(C=CHPh)(CO)₂ (II) as red plate-like crystals, m.p. 75-76°C. (Found: C 44.08; H, 2.47; Re, 44.73. $C_{15}H_{1}$, O_2Re calcd.: C, 43.99; H, 2.71; Re, 45.47%).

Removal of the solvent from fraction (3) and recrystallization of the solid residue from ether/petroleum ether mixture (1:25) rendered 0.04 g (3%) of $Cp_2Re_2(\mu$ -C=CHPh)(CO)₄ (III) as yellow crystals, m.p. 148–149°C. (Found: C, 37.35; H, 2.08; Re, 50.98. $C_{22}H_{16}O_4Re_2$ calcd.: C, 36.84; H, 2.25; Re, 51.96%).

Fraction (4) yielded, after evaporation of the solvent and recrystallization from ether, 0.09 g (4.3%) of $Cp_2Re_2[C=C(Ph)C(Ph)=CH_2](CO)_4$ (IV) as light red crystals, m.p. 150–152°C. (Found: C, 44.51; H, 2.96; Re, 45.13. $C_{30}H_{22}O_4$ -Re₂ calcd.: C, 43.99; H, 2.71; Re, 45.47%).

Fraction (5) rendered 0.04 g (3%) of $Cp_2Re(CO)_5$ (V) as yellow crystals identified by the IR spectrum of its solution in cyclohexane: $\nu(C=O)$ 1994, 1958, 1925, 1905; $\nu(C=O)$ 1745 cm⁻³. Ref. [11] in cyclohexane: $\nu(C=O)$ 1992, 1956, 1923, 1904; $\nu(C=O)$ 1740 cm⁻¹.

Interaction of $CpRe(C=CHPh)(CO)_2$ (II) with a water/alcohol/base

To a pink solution of 0.1 g of II in 20 ml of MeOH/THF mixture (3:1) a mixture of 0.05 g of KOH, 10 ml of H₂O and 10 ml of MeOH was added dropwise. After stirring for 0.5 h at 65°C the reaction mixture turned yellow, the solvent was then evaporated and the dry residue extracted with petroleum. The extract was evaporated yielding yellow crystals of $Cp_2Re_2(\mu$ -C=CHPh)(CO)₄ (III) identified by IR spectroscopy and TLC.

Acknowledgements

The authors are grateful to P.V. Petrovsky for measurement and discussion of ¹³C NMR spectra, to B.V. Lokshin for measurement and discussion of Raman and IR spectra and to Yu.S. Nekrasov and V.F. Sizoy for measurement and discussion of mass spectra.

References

- 1 A.B. Antonova, N.E. Kolobova, P.V. Petrovskii, B.V. Lokshin and N.S. Obezyuk, J. Organometal. Chem., 137 (1977) 55.
- 2 F.A. Cotton, Progress in Inorganic Chemistry, 16 (1973) 487.
- 3 E.O. Fischer and U. Schubert, J. Organometal. Chem., 100 (1975) 59.
- 4 A.N. Nesmeyanov, N.E. Kolobova, Yu.V. Makarov, B.V. Lokshin and E.B. Rusach, Izv. AN SSSR, Ser. Khim., (1976) 629.

- 5 A.N. Nesmeyanov, G.G. Aleksandrov, A.B. Antonova, K.N. Anisimov, N.E. Kolobova and Yu. T. Struchkov, J. Organometal. Chem., 110 (1976) C36.
- 6 A. Zalkin, I.E. Hopkins and D.H. Templeton, Inorg. Chem., 5 (1966) 1189.
- 7 I.S. Astakhova, A.A. Johansson, V.A. Semion, Yu. T. Struchkov, K.N. Anisimov and N.E. Kolobova, Chem. Commun., (1976) 488.
- 8 G.G. Aleksandrov, Yu.T. Struchkov and Yu.V. Makarov, Zh. Strukturnov, Khimii, 14 (1973) 98.
- 9 D.W.H. Rankin and A. Robertson, J. Organometal. Chem., 105 (1976) 331.
- 10 F. Cotton and G. Wilkinson, Modern Inorganic Chemistry (in Russian), Vol. 3, Mir, Moscow, p. 397.
- 11 A.S. Foust, J.K. Hoyano and W.A.G. Graham, J. Organometal. Chem., 32 (1971) C65.